14 research outputs found

    Triple-ionised carbon associated with the low-density neutral hydrogen gas at 1.7 < z < 3.3: the integrated N(HI)-N(CIV) relation

    Full text link
    From the Voigt profile fitting analysis of 183 intervening CIV systems at 1.7 < z < 3.3 in 23 high-quality UVES/VLT and HIRES/Keck QSO spectra, we find that a majority of CIV systems (~75%) display a well-characterised scaling relation between integrated column densities of HI and CIV with a negligible redshift evolution, when column densities of all the HI and CIV components are integrated within a given (-150, +150) km/sec range centred at the CIV flux minimum. The integrated CIV column density N(CIV, sys) increases with N(HI, sys) at log N(HI, sys) = 14.0--15.5 and log N(CIV, sys) = 11.8--14.0, then becomes almost independent of N(HI, sys) at log N(HI, sys) > 16, with a large scatter: at log N(HI, sys) = 14--22, log N(CIV, sys) = C1 / (log(NHI, sys) + C2) + C3, with C1 = -1.90+0.55, C2 = -14.11+0.19 and C3 = 14.76+0.17, respectively. The steep (flat) part is dominated by SiIV-free (SiIV-enriched) CIV systems. Extrapolating the N(HI, sys)-N(CIV, sys) relation implies that most absorbers with log N(HI) < 14 are virtually CIV-free. The N(HI, sys)-N(CIV, sys) relation does not hold for individual components, clumps or the integration velocity range less than +-100 km/sec. It is expected if the line-of-sight extent of CIV is smaller than HI and N(CIV, sys) decreases more rapidly than N(HI, sys) at the larger impact parameter, regardless of the location of the HI+CIV gas in the IGM filaments or in the intervening galactic halos.Comment: Accepted for publication on MNRAS, 26 pages, 20 figures, 4 tables. On-line materials are found in the submitted civ.tar.gz file: complete Table 2, complete Table 3, complete Table 4, velocity plots civ1.pdf, civ2.pdf, civ3.pdf, civ4.pdf and civ5.pd

    The Impact of Temperature Fluctuations on the Lyman-alpha Forest Power Spectrum

    Full text link
    We explore the impact of spatial fluctuations in the intergalactic medium temperature on the Lyman-alpha forest flux power spectrum near z ~ 3. We develop a semianalytic model to examine temperature fluctuations resulting from inhomogeneous HI and incomplete HeII reionizations. Detection of these fluctuations might provide insight into the reionization histories of hydrogen and helium. Furthermore, these fluctuations, neglected in previous analyses, could bias constraints on cosmological parameters from the Lyman-alpha forest. We find that the temperature fluctuations resulting from inhomogeneous HI reionization are likely to be very small, with an rms amplitude of < 5%, σT0/<0.05\sigma_{T_0}/ < 0.05. More important are the temperature fluctuations that arise from incomplete HeII reionization, which might plausibly be as large as 50%, σT0/ 0.5\sigma_{T_0}/ ~ 0.5. In practice, however, these temperature fluctuations have only a small effect on flux power spectrum predictions. The smallness of the effect is possibly due to density fluctuations dominating over temperature fluctuations on the scales probed by current measurements. On the largest scales currently probed, k ~ 0.001 s/km (~0.1 h/Mpc), the effect on the flux power spectrum may be as large as ~10% in extreme models. The effect is larger on small scales, up to ~20% at k = 0.1 s/km, due to thermal broadening. Our results suggest that the omission of temperature fluctuations effects from previous analyses does not significantly bias constraints on cosmological parameters.Comment: 11 pages, 5 figures, ApJ accepte

    Searching for fluctuations in the IGM temperature using the Lyman alpha forest

    Full text link
    We propose a statistical method to search for fluctuations in the temperature of the intergalactic medium (IGM) using the Lyman α\alpha forest. The power on small scales (\sim 25 \km/\s) is used as a thermometer and fluctuations of this power are constrained. The method is illustrated using Q1422+231. We see no evidence of temperature fluctuations. We show that in a model with two temperatures that occupy comparable fractions of the spectra, the ratio of small scale powers is constrained to be smaller than 3.5 (corresponding to a factor of 2.5 in temperature). We show that approximately ten quasars are needed constrain factors of two fluctuations in small scale power power.Comment: 9 pages, 10 figure

    How Neutral is the Intergalactic Medium at z ~ 6?

    Full text link
    Recent observations of high redshift quasar spectra reveal long gaps with little flux. A small or no detectable flux does not by itself imply the intergalactic medium (IGM) is neutral. Inferring the average neutral fraction from the observed absorption requires assumptions about clustering of the IGM, which the gravitational instability model supplies. Our most stringent constraint on the neutral fraction at z ~ 6 is derived from the mean Lyman-beta transmission measured from the z=6.28 SDSS quasar of Becker et al. -- the neutral hydrogen fraction at mean density has to be larger than 4.7 times 10^{-4}. This is substantially higher than the neutral fraction of ~ 3-5 times 10^{-5} at z = 4.5 - 5.7, suggesting that dramatic changes take place around or just before z ~ 6, even though current constraints are still consistent with a fairly ionized IGM at z ~ 6. An interesting alternative method to constrain the neutral fraction is to consider the probability of having many consecutive pixels with little flux, which is small unless the neutral fraction is high. This constraint is slightly weaker than the one obtained from the mean transmission. We show that while the derived neutral fraction at a given redshift is sensitive to the power spectrum normalization, the size of the jump around z ~ 6 is not. We caution that systematic uncertainties include spatial fluctuations in the ionizing background, and the continuum placement. Tests are proposed. In particular, the sightline to sightline dispersion in mean transmission might provide a useful diagnostic. We express the dispersion in terms of the transmission power spectrum, and develop a method to calculate the dispersion for spectra that are longer than the typical simulation box.Comment: 20 pages, 5 figures; ApJ accepted version; constraints revised due to a revised power spectrum normalization in fiducial mode

    The Lyman Alpha Forest in the Spectra of QSOs

    Get PDF
    Observations of redshifted Lyman alpha forest absorption in the spectra of quasistellar objects (QSOs) provide a highly sensitive probe of the distribution of gaseous matter in the universe. Over the past two decades optical spectroscopy with large ground-based telescopes, and more recently ultraviolet spectroscopy from space have yielded a wealth of information on what appears to be a gaseous, photoionized intergalactic medium, partly enriched by the products of stellar nucleosynthesis, residing in coherent structures over many hundreds of kiloparsecs. Recent progress with cosmological hydro-simulations based on hierarchical structure formation models has led to important insights into the physical structures giving rise to the forest. If these ideas are correct, a truely inter- and proto-galactic medium [at high redshift (z ~ 3), the main repository of baryons] collapses under the influence of dark matter gravity into flattened or filamentary structures, which are seen in absorption against background QSOs. With decreasing redshift, galaxies forming in the denser regions, may contribute an increasing part of the Lyman alpha absorption cross-section. Comparisons between large data samples from the new generation of telescopes and artificial Lyman alpha forest spectra from cosmological simulations promise to become a useful cosmological tool.Comment: latex plus three postscript figures, uses psfig,sty; Annual Review of Astronomy and Astrophysics 1998, vol. 36 (in press
    corecore